miR-4417 Targets Tripartite Motif-Containing 35 (TRIM35) and Regulates Pyruvate Kinase Muscle 2 (PKM2) Phosphorylation to Promote Proliferation and Suppress Apoptosis in Hepatocellular Carcinoma Cells
نویسندگان
چکیده
BACKGROUND MicroRNAs (miRNAs) are a class of small non-coding RNAs that are strongly involved in various types of carcinogenesis, including hepatocellular carcinoma (HCC). This study aimed to clarify whether miR-4417 promotes HCC growth by targeting TRIM35 and regulating PKM2 phosphorylation. MATERIAL AND METHODS Online software, including TargetScan and miRanda, was used to predict the potential target of miR-4417. Real-Time PCR (qRT-PCR) and Western blot assays were performed to detect the expression levels of mRNA and protein, respectively. Cell proliferation was measured by MTT assay and apoptosis in A549 cells was examined by flow cytometry. RESULTS Bioinformatics reveal that TRIM35 mRNA contains 1 conserved target site of miR-4417. High level of miR-4417 and low levels of TRIM35 mRNA and protein were observed in HCC cells compared with a normal liver cell line. Biological function analysis showed that miR-4417 inhibitor inhibits cell proliferation and promotes apoptosis in HCC cells. Furthermore, we verified that TRIM35 is a functional target of miR-4417 by use of luciferase reporter assay, and TRIM35 overexpressing showed an elevation of proliferation and a reduction of apoptosis in HCC cells. We subsequently investigated whether miR-4417 and TRIM35 regulate HCC cell proliferation and apoptosis through PKM2 Y105 phosphorylation, and the results supported our speculation that miR-4417 targets TRIM35 and regulates the Y105 phosphorylation of PKM2 to promote hepatocarcinogenesis. CONCLUSIONS Our findings indicate that miR-4417 may function as an oncogene in HCC and is a potential alternative therapeutic target for this deadly disease.
منابع مشابه
Co-expression of PKM2 and TRIM35 predicts survival and recurrence in hepatocellular carcinoma
The identification of prognostic markers for hepatocellular carcinoma (HCC) is needed for clinical practice. Tripartite motif-containing 35 (TRIM35) is a tumor suppressor of HCC. TRIM35 inhibits phosphorylation of pyruvate kinase isoform M2 (PKM2), which is involved in aerobic glycolysis of cancer cells. We found that expression of PKM2 was significantly increased in HCC tissues. This overexpre...
متن کاملmiR-122 Targets Pyruvate Kinase M2 and Affects Metabolism of Hepatocellular Carcinoma
In contrast to normal differentiated cells that depend on mitochondrial oxidative phosphorylation for energy production, cancer cells have evolved to utilize aerobic glycolysis (Warburg's effect), with benefit of providing intermediates for biomass production. MicroRNA-122 (miR-122) is highly expressed in normal liver tissue regulating a wide variety of biological processes including cellular m...
متن کاملMiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in cervical cancer
In recent decades, miRNA has been reported as a crucial modulator in some biology progressions. This work aims to assess the expression and role of miR-let-7a and pyruvate kinase muscle isozyme M2 (PKM2) in CC tissues and cell lines. Here, we identified that miR-let-7a expression was decreased in CC tissues, and SiHa and HeLa cells (all P < 0.001), however, PKM2 expression was increased in thes...
متن کاملDownregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملSH2 domain-containing phosphatase 1 regulates pyruvate kinase M2 in hepatocellular carcinoma
Pyruvate kinase M2 (PKM2) is known to promote tumourigenesis through dimer formation of p-PKM2Y105. Here, we investigated whether SH2-containing protein tyrosine phosphatase 1 (SHP-1) decreases p-PKM2Y105 expression and, thus, determines the sensitivity of sorafenib through inhibiting the nuclear-related function of PKM2. Immunoprecipitation and immunoblot confirmed the effect of SHP-1 on PKM2Y...
متن کامل